
Network Working Group R. Shade
Internet-Draft M. Warres
Intended status: Informational Google
Expires: January 9, 2017 July 8, 2016

 HTTP/2 Semantics Using The QUIC Transport Protocol
 draft-shade-quic-http2-mapping-00

Abstract

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP/2, such as stream multiplexing, per-stream
 flow control, and low-latency connection establishment. This
 document describes a mapping of HTTP/2 semantics over QUIC.
 Specifically, this document identifies HTTP/2 features that are
 subsumed by QUIC, and describes how the other features can be
 implemented atop QUIC.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of

Shade & Warres Expires January 9, 2017 [Page 1]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP/2 Over QUIC July 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. QUIC advertisement . 2
 3. Connection establishment 3
 4. Sending a request on an HTTP/2-over-QUIC connection 4
 4.1 . Terminating a stream 5
 5. Writing data to QUIC streams 5
 6. Stream Mapping . 5
 6.1 . Reserved Streams . 6
 6.1.1 . Stream 3: headers 6
 6.1.2 . Stream states . 7
 7. Stream Priorities . 7
 8. Flow Control . 8
 9. Server Push . 8
 10. Error Codes . 9
 11. Other HTTP/2 frames . 10
 11.1 . GOAWAY frame . 10
 11.2 . PING frame . 10
 11.3 . PADDING frame . 11
 12. Normative References . 11
 Authors’ Addresses . 11

1. Introduction

 The QUIC transport protocol has several features that are desirable
 in a transport for HTTP/2, such as stream multiplexing, per-stream
 flow control, and low-latency connection establishment. This
 document describes a mapping of HTTP/2 semantics over QUIC.
 Specifically, this document identifies HTTP/2 features that are
 subsumed by QUIC, and describes how the other features can be
 implemented atop QUIC.

 QUIC is described in [draft-hamilton-quic-transport-protocol]. For a
 full description of HTTP/2, see [RFC 7540].

2. QUIC advertisement

 A server advertises that it can speak HTTP/2-over-QUIC via the Alt-
 Svc HTTP response header. It does so by including the header in any
 response sent over a non-QUIC (e.g. HTTP/2 over TLS) connection:

 Alt-Svc: quic=":443"

Shade & Warres Expires January 9, 2017 [Page 2]

https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/rfc7540

Internet-Draft HTTP/2 Over QUIC July 2016

 In addition, the list of QUIC versions supported by the server can be
 specified by the v= parameter. For example, if a server supported
 both version 33 and 34 it would specify the following header:

 Alt-Svc: quic=":443"; v="34,33"

 On receipt of this header, a client may attempt to establish a QUIC
 connection on port 443 and, if successful, send HTTP/2 requests using
 the mapping described in this document.

 Connectivity problems (e.g. firewall blocking UDP) may result in QUIC
 connection establishment failure, in which case the client should
 gracefully fallback to HTTP/2-over-TLS/TCP.

3. Connection establishment

 HTTP/2-over-QUIC connections are established as described in [draft-
 hamilton-quic-transport-protocol]. The QUIC crypto handshake MUST
 use TLS [draft-thomson-quic-tls].

 While connection-level options pertaining to the core QUIC protocol
 are set in the initial crypto handshake [Combined Crypto and
 Transport Handshake], HTTP/2-specific settings are conveyed in the
 HTTP/2 SETTINGS frame. After the QUIC connection is established, an
 HTTP/2 SETTINGS frame may be sent as the initial frame of the QUIC
 headers stream (StreamID 3, See [Stream Mapping]). As in HTTP/2,
 additional SETTINGS frames may be sent mid-connection by either
 endpoint.

 TODO: decide whether to acknowledge receipt of SETTINGS through empty
 SETTINGS frames with ACK bit set, as in HTTP/2, or rely on transport-
 level acknowledgment.

 Some transport-level options that HTTP/2-over-TCP specifies via the
 SETTINGS frame are superseded by QUIC transport parameters in HTTP/2-
 over-QUIC. Below is a listing of how each HTTP/2 SETTINGS parameter
 is mapped:

 o SETTINGS_HEADER_TABLE_SIZE

 * Sent in HTTP/2 SETTINGS frame.

 o SETTINGS_ENABLE_PUSH

 * Sent in HTTP/2 SETTINGS frame [TBD, currently set using QUIC
 "SPSH" connection option]

 o SETTINGS_MAX_CONCURRENT_STREAMS

Shade & Warres Expires January 9, 2017 [Page 3]

https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-thomson-quic-tls

Internet-Draft HTTP/2 Over QUIC July 2016

 * QUIC requires the maximum number of incoming streams per
 connection to be specified in the initial crypto handshake,
 using the "MSPC" tag. Specifying
 SETTINGS_MAX_CONCURRENT_STREAMS in the HTTP/2 SETTINGS frame is
 an error.

 o SETTINGS_INITIAL_WINDOW_SIZE

 * QUIC requires both stream and connection flow control window
 sizes to be specified in the initial crypto handshake, using
 the "SFCW" and "CFCW" tags, respectively. Specifying
 SETTINGS_INITIAL_WINDOW_SIZE in the HTTP/2 SETTINGS frame is an
 error.

 o SETTINGS_MAX_FRAME_SIZE

 * This setting has no equivalent in QUIC. Specifying it in the
 HTTP/2 SETTINGS frame is an error.

 o SETTINGS_MAX_HEADER_LIST_SIZE

 * Sent in HTTP/2 SETTINGS frame.

 As with HTTP/2-over-TCP, unknown SETTINGS parameters are tolerated
 but ignored. SETTINGS parameters are acknowledged by the receiving
 peer, by sending an empty SETTINGS frame in response with the ACK bit
 set.

4. Sending a request on an HTTP/2-over-QUIC connection

 A high level overview of sending an HTTP/2 request on an established
 QUIC connection is as follows, with further details in later sections
 of this document. A client should first encode any HTTP headers
 using HPACK [RFC7541] and frame them as HTTP/2 HEADERS frames. These
 are sent on StreamID 3 (see [Stream Mapping]). The exact layout of
 the HEADERS frame is described in Section 6.2 of [RFC7540] . No
 HTTP/2 padding is required: QUIC provides a PADDING frame for this
 purpose.

 While HEADERS are sent on stream 3, the mandatory stream identifier
 in each HEADERS frame indicates the QUIC StreamID on which a
 corresponding request body may be sent. If there is no non-header
 data, the specified QUIC data stream will never be used.

Shade & Warres Expires January 9, 2017 [Page 4]

https://tools.ietf.org/pdf/rfc7541
https://tools.ietf.org/pdf/rfc7540#section-6.2

Internet-Draft HTTP/2 Over QUIC July 2016

4.1 . Terminating a stream

 A stream can be terminated in one of three ways:

 o the request/response is headers only, in which case a HEADERS
 frame with the END_STREAM bit set ends the stream specified in the
 HEADERS frame

 o the request/response has headers and body but no trailing headers,
 in which case the final QUIC STREAM frame will have the FIN bit
 set

 o the request/response has headers, body, and trailing headers, in
 which case the final QUIC STREAM frame will not have the FIN bit
 set, and the trailing HEADERS frame will have the END_STREAM bit
 set

 (TODO: Describe mapping of HTTP/2 stream state machine to QUIC stream
 state machine.)

5. Writing data to QUIC streams

 A QUIC stream provides reliable in-order delivery of bytes, within
 that stream. On the wire, data is framed into QUIC STREAM frames,
 but this framing is invisible to the HTTP/2 layer. A QUIC receiver
 buffers and orders received STREAM frames, exposing the data
 contained within as a reliable byte stream to the application.

 Bytes written to Stream 3 must be HTTP/2 HEADERS frames (or other
 HTTP/2 non-data frames), whereas bytes written to data streams should
 simply be request or response bodies. No further framing is required
 by HTTP/2 (i.e. no HTTP/2 DATA frames are used).

 If data arrives on a data stream before the corresponding HEADERS
 have arrived on stream 3, then the data is buffered until the HEADERS
 arrive.

6. Stream Mapping

 When HTTP/2 headers and data are sent over QUIC, the QUIC layer
 handles most of the stream management. HTTP/2 StreamIDs are replaced
 by QUIC StreamIDs. HTTP/2 does not need to do any explicit stream
 framing when using QUIC---data sent over a QUIC stream simply
 consists of HTTP/2 headers or body. Requests and responses are
 considered complete when the QUIC stream is closed in the
 corresponding direction.

Shade & Warres Expires January 9, 2017 [Page 5]

Internet-Draft HTTP/2 Over QUIC July 2016

 Like HTTP/2, QUIC uses odd-numbered StreamIDs for client initiated
 streams, and even-numbered IDs for server initiated (i.e. server
 push) streams. Unlike HTTP/2 there are a couple of reserved (or
 dedicated) StreamIDs in QUIC.

6.1 . Reserved Streams

 StreamID 1 is reserved for crypto operations (the handshake, crypto
 config updates), and MUST NOT be used for HTTP/2 headers or body, see
 [core protocol doc]. StreamID 3 is reserved for sending and
 receiving HTTP/2 HEADERS frames. Therefore the first client
 initiated data stream has StreamID 5.

 There are no reserved server initiated StreamIDs, so the first server
 initiated (i.e. server push) stream has an ID of 2, followed by 4,
 etc.

6.1.1 . Stream 3: headers

 HTTP/2-over-QUIC uses HPACK header compression as described in
 [RFC7541]. HPACK was designed for HTTP/2 with the assumption of in-
 order delivery such as that provided by TCP. A sequence of encoded
 header blocks must arrive (and be decoded) at an endpoint in the same
 order in which they were encoded. This ensures that the dynamic
 state at the two endpoints remains in sync.

 QUIC streams provide in-order delivery of data sent on those streams,
 but there are no guarantees about order of delivery between streams.
 To achieve in-order delivery of HEADERS frames in QUIC, they are all
 sent on the reserved Stream 3. Data (request/response bodies) which
 arrive on other data streams are buffered until the corresponding
 HEADERS arrive and are read out of Stream 3.

 This does introduce head-of-line blocking: if the packet containing
 HEADERS for stream N is lost or reordered then stream N+2 cannot be
 processed until they it has been retransmitted successfully, even
 though the HEADERS for stream N+2 may have arrived.

 Trailing headers (trailers) can also be sent on stream 3. These are
 sent as HTTP/2 HEADERS frames, but MUST have the END_STREAM bit set,
 and MUST include a ":final-offset" pseudo-header. Since QUIC
 supports out of order delivery, receipt of a HEADERS frame with the
 END_STREAM bit set does not guarantee that the entire request/
 response body has been fully received. Therefore, the extra ":final-
 offset" pseudo-header is included in trailing HEADERS frames to
 indicate the total number of body bytes sent on the corresponding
 data stream. This is used by the QUIC layer to determine when the
 full request has been received and therefore when it is safe to tear

Shade & Warres Expires January 9, 2017 [Page 6]

https://tools.ietf.org/pdf/rfc7541

Internet-Draft HTTP/2 Over QUIC July 2016

 down local stream state. The ":final-offset" pseudo header is
 stripped from the HEADERS before passing to the HTTP/2 layer.

6.1.2 . Stream states

 The mapping of HTTP/2-over-QUIC with potential out of order delivery
 of HEADERS frames results in some changes to the HTTP/2 stream state
 transition diagram [https://tools.ietf.org/html/rfc7540#section-5.1].
 Specifically the transition from "open" to "half closed (remote)",
 and the transition from "half closed (local)" to "closed" takes place
 only when:

 o the peer has explicitly ended the stream via either

 * an HTTP/2 HEADERS frame with END_STREAM bit set and, in the
 case of trailing headers, the :final-offset pseudo-header

 * or a QUIC stream frame with the FIN bit set.

 o and the full request or response body has been received.

7. Stream Priorities

 HTTP/2-over-QUIC uses the HTTP/2 priority scheme described in
 [RFC7540 Section 5.3]. In the HTTP/2 priority scheme, a given stream
 can be designated as dependent upon another stream, which expresses
 the preference that the latter stream (the "parent" stream) be
 allocated resources before the former stream (the "dependent"
 stream). Taken together, the dependencies across all streams in a
 connection form a dependency tree. The structure of the dependency
 tree changes as HTTP/2 HEADERS and PRIORITY frames add, remove, or
 change the dependency links between streams.

 Implicit in this scheme is the notion of in-order delivery of
 priority changes (i.e., dependency tree mutations): since operations
 on the dependency tree such as reparenting a subtree are not
 commutative, both sender and receiver must apply them in the same
 order to ensure that both sides have a consistent view of the stream
 dependency tree. HTTP/2 specifies priority assignments in PRIORITY
 frames and (optionally) in HEADERS frames. To achieve in-order
 delivery of HTTP/2 priority changes in HTTP/2-over-QUIC, HTTP/2
 PRIORITY frames, in addition to HEADERS frames, are also sent on
 reserved stream 3. The semantics of the Stream Dependency, Weight, E
 flag, and (for HEADERS frames) PRIORITY flag are the same as in
 HTTP/2-over-TCP.

 Since HEADERS and PRIORITY frames are sent on a different stream than
 the STREAM frames for the streams they reference, they may be

Shade & Warres Expires January 9, 2017 [Page 7]

Internet-Draft HTTP/2 Over QUIC July 2016

 delivered out-of-order with respect to the STREAM frames. There is
 no special handling for this--the receiver should simply assign
 resources according to the most recent stream priority information
 that it has received.

 ALTERNATIVE DESIGN: if the core QUIC protocol implements priorities,
 then this document should map the HTTP/2 priorities scheme to that
 provided by the core protocol. This would likely involve prohibiting
 the sending of HTTP/2 PRIORITY frames and setting of the PRIORITY
 flag in HTTP/2 HEADERS frames, to avoid conflicting directives.

8. Flow Control

 QUIC provides stream and connection level flow control, similar in
 principle to HTTP/2’s flow control but with some implementation
 differences. As flow control is handled by QUIC, the HTTP/2 mapping
 need not concern itself with maintaining flow control state, or how/
 when to send flow control frames to the peer. The HTTP/2 mapping
 must not send HTTP/2 WINDOW_UPDATE frames.

 The initial flow control window sizes (stream and connection) are
 communicated during the crypto handshake (see [Connection
 establishment]). Setting these values to the maximum size (2^31 - 1)
 effectively disables flow control.

 Relatively small initial windows can be used, as QUIC will attempt to
 auto-tune the flow control windows based on usage. See [draft-
 hamilton-quic-transport-protocol] for more details.

9. Server Push

 HTTP/2-over-QUIC supports HTTP/2 server push. During connection
 establishment, the client indicates whether or it is willing to
 receive server pushes via the SETTINGS_ENABLE_PUSH setting in the
 HTTP/2 SETTINGS frame (see [Connection Establishment]), which
 defaults to 1 (true).

 As with server push for HTTP/2-over-TCP, the server initiates a
 server push by sending an HTTP/2 PUSH_PROMISE frame containing the
 StreamID of the stream to be pushed, as well as request header fields
 attributed to the request. The PUSH_PROMISE frame is sent on stream
 3, to ensure proper ordering with respect to other HEADERS and non-
 data frames. Within the PUSH_PROMISE frame, the StreamID in the
 common HTTP/2 frame header indicates the associated (client-
 initiated) stream for the new push stream, while the Promised Stream
 ID field specifies the StreamID of the new push stream.

Shade & Warres Expires January 9, 2017 [Page 8]

https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol

Internet-Draft HTTP/2 Over QUIC July 2016

 The server push response is conveyed in the same way as a non-server-
 push response, with response headers and (if present) trailers
 carried by HTTP/2 HEADERS frames sent on reserved stream 3, and
 response body (if any) sent via QUIC stream frames on the stream
 specified in the corresponding PUSH_PROMISE frame.

10. Error Codes

 The HTTP/2 error codes defined in [RFC7540 Section 7] map to QUIC
 error codes as follows:

 o NO_ERROR (0x0)

 * Maps to QUIC_NO_ERROR

 o PROTOCOL_ERROR (0x1)

 * No single mapping?

 o INTERNAL_ERROR (0x2)

 * QUIC_INTERNAL_ERROR? (not currently defined in core protocol
 spec)

 o FLOW_CONTROL_ERROR (0x3)

 * QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA? (not currently
 defined in core protocol spec)

 o SETTINGS_TIMEOUT (0x4)

 * ? (depends on whether we support SETTINGS acks)

 o STREAM_CLOSED (0x5)

 * QUIC_STREAM_DATA_AFTER_TERMINATION

 o FRAME_SIZE_ERROR (0x6)

 * QUIC_INVALID_FRAME_DATA

 o REFUSED_STREAM (0x7)

 * ?

 o CANCEL (0x8)

 * ?

Shade & Warres Expires January 9, 2017 [Page 9]

Internet-Draft HTTP/2 Over QUIC July 2016

 o COMPRESSION_ERROR (0x9)

 * QUIC_DECOMPRESSION_FAILURE (not currently defined in core spec)

 o CONNECT_ERROR (0xa)

 * ? (depends whether we decide to support CONNECT)

 o ENHANCE_YOUR_CALM (0xb)

 * ?

 o INADEQUATE_SECURITY (0xc)

 * QUIC_HANDSHAKE_FAILED, QUIC_CRYPTO_NO_SUPPORT

 o HTTP_1_1_REQUIRED (0xd)

 TODO: fill in missing error code mappings.

11. Other HTTP/2 frames

 QUIC includes some features (e.g. flow control) which are also
 present in HTTP/2. In these cases the HTTP/2 mapping need not re-
 implement them. As a result some HTTP/2 frame types are not required
 when using QUIC, as they either are directly implemented in the QUIC
 layer, or their functionality is provided via other means. This
 section of the document describes these cases.

11.1 . GOAWAY frame

 QUIC has its own GOAWAY frame, and QUIC implementations may to expose
 the sending of a GOAWAY to the application. The semantics of sending
 a GOAWAY in QUIC are identical to HTTP/2: an endpoint sending a
 GOAWAY will continue processing open streams, but will not accept
 newly created streams.

 QUIC’s GOAWAY frame is described in detail in the [draft-hamilton-
 quic-transport-protocol].

11.2 . PING frame

 QUIC has its own PING frame, which is currently exposed to the
 application. QUIC clients send periodic PINGs to servers if there
 are no currently active data streams on the connection.

 QUIC’s PING frame is described in detail in the [draft-hamilton-quic-
 transport-protocol].

Shade & Warres Expires January 9, 2017 [Page 10]

https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol

Internet-Draft HTTP/2 Over QUIC July 2016

11.3 . PADDING frame

 There is no HTTP/2 padding in this mapping; padding is instead
 provided at the QUIC layer by including QUIC PADDING frames in a
 packet payload. An HTTP/2 over QUIC mapping should treat any HTTP/2
 level padding as an error, to avoid any possibility of inconsistent
 flow control states between endpoints (e.g. client sends HTTP/2
 padding, counts it against flow control, server ignores).

12. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", May 2015.

 [RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", May 2015.

 [draft-hamilton-quic-transport-protocol]
 Hamilton, R., Iyengar, J., Swett, I., and A. Wilk, "QUIC:
 A UDP-Based Multiplexed and Secure Transport", July 2016.

 [draft-thomson-quic-tls]
 Thomson, M. and R. Hamilton, "Porting QUIC to TLS", March
 2016.

 [draft-iyengar-quic-loss-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Recovery and
 Congestion Control", July 2016.

Authors’ Addresses

 Robbie Shade
 Google

 Email: rjshade@google.com

 Mike Warres
 Google

 Email: mpw@google.com

Shade & Warres Expires January 9, 2017 [Page 11]

https://tools.ietf.org/pdf/draft-hamilton-quic-transport-protocol
https://tools.ietf.org/pdf/draft-thomson-quic-tls
https://tools.ietf.org/pdf/draft-iyengar-quic-loss-recovery

