
Discovering and Mapping Complete Surfaces With Stereo

Robbie Shade and Paul Newman

Abstract— This paper is about the automated discovery and
mapping of surfaces using a stereo pair. We begin with the
observation that for any workspace which is topologically
connected (i.e. does not contain free flying islands) there exists
a single surface that covers the entirety of the workspace. We
call this surface the covering surface. We assume that while
this surface is complex and self intersecting every point on it
can be imaged from a suitable camera pose and furthermore
that it is locally smooth at some finite scale – it is a manifold.
We show how by representing the covering surface as a non-
planar graph of observed pixels we are able to plan new
views and importantly fuse disparity maps from multiple views.
The resulting graph can be lifted to 3D to yield a full scene
reconstruction.

I. INTRODUCTION

In this paper we consider the problem of workspace
surface discovery using an actuated stereo camera. Our goal
is to generate a sequence of control commands which will
servo the camera to take views of the workspace which
will guarantee that we image every point on every visible
surface of every object in the workspace. With this complete
coverage we can construct a single covering surface S of the
entire workspace. This work is motivated by a desire to con-
struct complete and detailed maps of unknown workspaces
— a task which has an important role to play in automated
inspection. We emphasise that the aim is to obtain surface
coverage of a arbitrarily complex workspace using a stereo
camera - not the exploration of free-space.

We make few assumptions in this work but they need to be
made explicit. Firstly we require that we have accurate infor-
mation on the pose of the camera for all time – a reasonable
assumption given we are using a stereo pair and the state of
the art in structure from motion and SLAM techniques[1].
Although the surface S will be complex and self intersecting
we place just two restrictions on the workspace itself. Firstly
we require that it must be topologically connected (i.e.
devoid of floating objects). Secondly, for practical reasons
we require that there exists at least one camera pose for every
point p ∈ S such that the p is four connected when projected
into a stereo disparity map. Put simply this implies that there
are no prominent knife edges which resolutely remain one
dimensional however close the camera gets to them.

Our approach can be summarised as follows. We con-
struct a non-planar graph consisting of observed pixels as
vertices. Neighbouring pixels in a stereo disparity image
will be connected with an edge weighted in proportion
to the Euclidean distance in R3 between vertices - spatial
positions having been triangulated from stereo. As new views

The authors are with the Oxford University Mobile Robotics Group
{rjs,pnewman}@robots.ox.ac.uk

(a) Left image (b) Disparity image

(c) Point cloud (d) Graph detail

Fig. 1. The results of constructing our graph structure from a typical stereo
image pair and disparity image. (a) is the input image IL (the corresponding
IR is not shown). (b) shows the result of applying stereo processing to IL

and IR, the disparity image D. Darker pixels are further from the camera.
(c) the point cloud which is obtained by triangulation of valid disparity
values. (d) detail of the graph structure - edges have been coloured according
to weight: low weight edges are green, while high weight edges are red.

are taken the graph is grown such that at any time the
edge between two vertices will correspond to the smallest
observed Euclidean distance between corresponding pixels
in any disparity image to date. By detecting and ranking the
severity of one dimensional rifts in this graph (collections
of edges with large weights in close proximity) we can plan
a continuous trajectory through space to guide the camera
to a new pose, the view from which will enable some if
not all of the scene detail hidden by the rift to be filled in.
The process can continue until no significant rifts remain.
In what follows we will carefully explain the detail behind
this scheme and cover some of the intricacies required to
maintain a consistent graphical structure.

II. RELATED WORK

There is a wide ranging and extensive literature on 3D
mapping and reconstruction with mobile robots. A typical
approach is to use a 2D occupancy grid as the map of the
world [2] which necessarily requires discretisation of the
world into quantised cells. This in turn risks oversimpli-
fication of structure of the world, and does not allow for
overhanging obstacles such as bridges. Later work such as
the multi-level surface maps of [3] extend this idea, allowing
for multiple traversable levels in each cell of the grid.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 Crown 3910

A common exploration strategy on such maps is frontier
based exploration [2] [4] - the robot is directed towards the
closest frontier between explored and unexplored grid cells.
More recently [4] uses a maximum-likelihood occupancy
grid generated from stereo data, and frontier based explo-
ration strategies to explore an office environment.

The gap navigation tree (GNT), introduced by [5] and [6],
is a data structure designed to maintain a graph of gaps
- depth discontinuties with respect to the heading of the
robot. The authors show that by chasing down gaps, while
maintaining the graph structure by adding and removing gaps
as necessary, locally optimal navigation can be achieved.
[7] introduces a path planning exploration algorithm based
on eliminating these gaps using visibility maps. Exploration
of a simple bounded environment by multiple observers is
demonstrated.

On a larger scale, the visibility-based fusion of stereo data
by [8] quickly combines stereo depth maps from multiple
viewponts. Using consideration of occlusions and free-space
violations to find accurate depths for each pixel, they then
apply a triangular mesh to the resulting point cloud to pro-
duce the final model in real-time. Similarily [9] overcomes
the 2D limitations of occupancy grids by using dynamic
3D octrees and planar polygon fitting the resulting data.
Semantic labelling of terrain, with different path planners
for different environments, leads to a real-time system for
navigation.

Our work has interesting parallels with the Gap Navigation
Tree of LaValle in which it is shown that a scheme that
requires the chasing down of discontinuities perceived depth
in a 2D environment provably enforces complete exploration.
One could see the graphical approach we adopt here as a re-
factorisation of this approach and a generalisation to 3D.

III. NOTATION

Notation conventions followed in this paper are as follows.
A 6 DoF camera pose at time i is

ci = [x, y, z, θr, θp, θq]T

We will refer to points in R3 as

p = [px, py, pz]T

Left and right images from the stereo camera are IL and
IR. A pixel at image row and column [r, c]T is addressed
as ILr,c. An image seen at camera pose ci is iIL.

IV. GRAPH CONSTRUCTION

A. Disparity from stereo

Stereo was chosen as the sensor modality for this research
as it provides dense point clouds and high resolution source
images at high speed. A stereo camera provides left and
right images IL and IR. Corresponding pixels are identified
using a local window-based matching technique resulting in
a disparity image D.

Every pixel of a disparity image stores a floating point
value d = Dr,c, the disparity of ILr,c. This disparity is
the horizontal displacement between pixels ILr,c and IRr,c−d
which are images of the same point in R3.

Some pixels do not have a disparity score due to poor
matching confidence or occlusions and are assigned an error
value. We will use the notation Dvalid to refer to the subset
of pixels in D which have valid disparities.

Figs. 1(a) and 1(b) show an example IL and the resulting
D. Pixels /∈ Dvalid are coloured white. The implementation
details of the stereo algorithm are described in Section IX.

B. Point cloud from disparity

With knowledge of the camera parameters (importantly
focal length f and baseline b) we can back project a pixel
in D and triangulate the position in R3. The back projection
function at camera pose ci is:

{πi(r, c) : R2 → R3} =

[
b.c

iDr,c
,
b.r

iDr,c
,
f.b

iDr,c

]T
(1)

Applying this function to all pixels in iDvalid gives us a
point cloud:

P = [πi(r, c) : ∀[r, c] ∈ iDvalid] (2)

This resulting point cloud is unorganised - it is simply a
list of points in space (Fig. 1(c) shows an example). However,
the source images which gave rise to this point cloud encode
a great deal of information about the relationship between
pixels and we aim to include this in the construction of our
graph structure.

Two neighbouring pixels in an image with similar dispar-
ities suggest that the two pixels are images of neighbouring
points on a surface in the world. Areas of a disparity image
with smooth gradients indicate smooth surfaces in the world
while discontinuties - edges in the disparity image - highlight
physical discontinuties in space.

An undirected graph, G = [V,E], consists of a set
of vertices, V, and a set of edges, E, which describe
the connectivity between vertices. In the case of a single
disparity map from camera pose ci, every pixel p ∈ P results
in a graph vertex v.

A vertex v, has a 3D position vx, a surface normal vn,
and a colour vr,g,b. Edges are constructed by considering
the pixels which surround v in iD. If v was seen at iDr,c,
then we consider the neighbouring pixels iDr±1,c±1. If one
or more of these pixels has a valid disparity and hence a
corresponding vertex u, then an edge is created connecting
v and u. Every edge e has a weight ew associated with it - in
this case it is simply the Euclidean distance in R3 between
the two end vertices:

ew = ||vx − ux||2 (3)

Fig. 1 shows the stages of constructing such a graph from
a typical stereo image pair. 200ppiImages IL (Fig. 1(a)) and
IR are used to create D (Fig. 1(b)). D is converted to a point

3911

(a) Input graph (b) Resulting rift

Fig. 2. Rift generation. Starting with a high weight edge (bold red edge in
(a)), we recursively follow high weight edges connected to the neighbours
of its end vertices. Explored edges are indicated with arrows. The detected
rift is shown in (b).

cloud ((Fig. 1(c)), and is used to create the graph structure
(Fig. 1(d)). The graph edges have been coloured according
to weight - low weight edges are green, while high weight
edges are red.

V. EDGE RIFTS

We now tackle the problem of identifying areas of the
scene which should be marked for exploration. Apparent in
Fig. 1 is the fact that groups of edges with high weights and
in close spatial proximity are indicative of discontinuities on
the surface explored so far. We call these groups of edges
rifts, and our method for identification of rifts in a graph is
as follows.

Algorithm 1: Rift identification in a graph

Input: Seed edge es
Edge weight threshold δ

Output: Rift R

ToV isit = [es]
while ToV isit 6= ∅ do

e = pop(ToV isit)
foreach n ∈ Neighbours([eu, ev]) do

foreach d ∈ Edges(n) do
if dw > δ then

ToV isit = ToV isit ∪ d
end

end
end

end

Starting with a high weight edge, e, we recursively follow
high weight edges connected to the neighbours of its end
vertices, as described in Algorithm (1). Every high weight
edge encountered is added to the rift R, along with its end
vertices. Finally a rift vertex is created in G at the geometric
center of the vertices comprising R.

The process is shown graphically in Fig. 2 on a simple
graph containing one rift. The emboldened graph edge in Fig.
2(a) is the edge with the highest weight and is the starting
point for rift generation. Explored edges are indicated by
arrows, with the detected rift shown in Fig. 2(b). The rift

Gi

Gi+1

iIL
i+1IL

Gm

ci

ci+1

Fig. 3. Merging of two graph structures. Each vertex v, in Gi+1 is projected
into iIL. If the pixel it projects onto is valid ([r, c]T ∈ Dvalid) then the
outgoing edges of v are added to the vertex in Gi corresponding to iDr,c,
and v is discarded. Otherwise v is added to Gi as a new vertex.

vertex can be seen in the geometric center, with blue edges
connecting it to G. We apply Algorithm (1) to every edge in
G which has a sufficiently large weight resulting in a set of
rifts R = [R0, R1, ..., Rn]

VI. MERGING GRAPHS

Given two graphs, Gi and Gi+1, along with associated
camera poses ci and ci+1, we wish to merge these into a
single graph Gm. Any given rift in Gi may not be visible
from Gi+1. To ensure complete surface coverage all existing
rifts must be inspected at some point, and so we do not want
to discard the old graph structure once after a change in pose.
The merging process aims to combine vertices from Gi and
Gi+1 which are representations of the same point in R3.

Algorithm 2: Graph merge operation

Input: Gi = [Vi,Ei]
Gi+1 = [Vi+1,Ei+1]
Minimum distance threshold γ

Output: Merged graph: Gm = [Vm,Em]

Gm = Gi
foreach v ∈ Vi+1 do

[r, c]T = π−1(vx)
V alidP ixel = [r, c]T ∈ iDvalid

Distance = ||πi+1(r, c)− vx||2
if ValidPixel && Distance < γ then

foreach [u, v] ∈ Edges(v) do
Em = Em ∪ Edge(u, iDr,c)

end
end
else

Vm = Vm ∪ v
end

end

3912

First we define a projection function from a point p to
image coordinates [r, c]T :

{π−1(p) : R3 → R2} =

[
f.px
pz

,
f.py
pz

]T
(4)

Each vertex v ∈ Gi+1 is projected into the disparity image
iD. If v is reprojected onto a valid pixel, (i.e. [r, c]T ∈
iDvalid) then we calculate the distance in between v and
πi+1(r, c). If this is below some threshold, typically of the
order of 1cm, we add the outgoing edges of v in Gi+1 to the
vertex corresponding to iDr,c in Gi, and discard v. Otherwise
v is added to G.

The pseudocode for this operation is given in Alg. 1. The
process is shown graphically in Fig. 3 for a simple synthetic
scene.

VII. EDGE VISIBILITY

The problem which now arises is that of determining when
an edge rift has been resolved, i.e. the unknown area of
the workspace represented by the rift has been explored.
Consider an edge e seen from pose ci and a new pose ci+1.
This is shown in Fig. 4.

If there exists a vertex in Gi+1 which is collinear with a
point on e and the camera center ci+1 then we perform a
visibility test. The projection of edge point pe in i+1IL is

[r, c]T = π−1i+1(pe) (5)

If [r, c]T ∈ Dvalid, we can retrieve the R3 position of the
corresponding vertex v:

pr,c = vx (6)

The two points pe and pr,c are collinear with the camera
center ci+1 as they both project onto the same pixel. The
visibility test is a comparison of the distances from the
camera center to both points:

dpe = ||pe − ci+1||2 (7)
dpr,c = ||pr,c − ci+1||2 (8)

If dpe
< dpr,c

then point pr,c is visible behind pe and
passes the test. The end points of e are projected into i+1D
and the set of pixels to test is chosen by the Bresenham line
drawing algorithm. Edge e is deleted from G if the fraction
of points passing the visibility test is greater than a threshold,
typically 75% of the pixels.

Fig. 4 shows a graphical example. The red edges e and
e′ were created at pose ci. The camera has now moved to
ci+1 and we use the visibility test on e and e′ to determine
whether they survive. Edge e will be deleted as the camera
can now see pixels pr,c behind every point on e. Edge e′ will
survive the visibility test because all points p′e′ are occluded
by pixels p′r,c.

VIII. PLANNING NEXT VIEW

We want to plan a continous camera trajectory through
space from the current pose ci to a new pose ci+1. The view

Fig. 4. Visibility testing. Two edges from e and e′ seen from ci. From
the new pose ci+1 pixel pr,c is visible behind pe. Pixel p′r,c is blocking
the view of p′e.

from ci+1 should enable the visibility based deletion of a rift,
and thus increase coverage of the environment surface.

A prerequisite is a method for surface normal estimation -
the camera poses comprising the path will be oriented to look
at the surface as the camera moves, and more importantly a
rift vertex must have a viewing direction associated with it.

A. Surface Normal Estimation

For a given vertex, v, we calculate the local surface normal
by considering its immediate neighbours in the graph and
fitting a plane to this point set. Inherent in this method is
a tradeoff between data smoothing and sensitivity to noise
- a large neighbourhood leads to noise insensitivity but
poor resolution. From experience we have found that using
vertices within one graph edge of v gives acceptable results.

A typical vertex will have four immediate neighbours, but
after graph merging (Section VI) may have more. Including
the source vertex, we get a set of k points:

Q =
[
v0 ... vk

]
=

 v0x ... vkx
v0y ... vky
v0z ... vkz

 (9)

A number of surface normal estimation methods for point
clouds are described and evaluated in [10]. They conclude
that for reliability, quality, and speed, a generally good choice
is the Singular Value Decomposition (SVD)[11].

The plane solution is obtained by mean-centering the
matrix Q and solving

min
n

∣∣∣∣Q+n
∣∣∣∣
2

(10)

where n is the plane normal [a, b, c]T and Q+ is the mean-
centered matrix:

Q+ =

Q− 1

k

k∑
j=1

Qj

T

(11)

This is solved by taking the SVD (UΣVT) of Q+. The
vector in V corresponding to the smallest singular value in
Σ is the normal of the plane.

3913

B. Rift selection

When faced with a set of rifts R, we order them according
to severity and distance from ci to the rift center:

cost(Ri) = α∆ + βS (12)

∆ is the distance through G from ci to Ri. Severity, S,
is a measure of rift size and is taken to be the number of
edges in the rift. α and β are weightings which are chosen
depending on the application and the graph scale. The rift
with the highest cost is chosen as the dominant rift, Rd. Pose
ci+1 is oriented to look along the normal of Rd.

The camera trajectory is found by planning a path over
the graph from ci to a ci+1. The A∗graph search algorithm
[12] [13] is used to find this path, and returns an ordered
set of graph vertices, v = [vs...vg], and correspondinge
edges, which constitute a path from a source vertex vs to a
goal vertex vg . Using the admissible heuristic of Euclidean
distance in R3 between vertices, A∗is guaranteed to return
the shortest path.

Each vertex on this path has a normal vn, and so the final
camera trajectory consists of a ordered set of poses cpath =
[cs, ..., cg] each oriented such that they view the workspace
surface along the normal at a fixed height (typically 1m).
The normal of a rift is taken to be the mean of the normals
of the vertices comprising the rift.

IX. RESULTS

A. Experimental setup

A handheld PointGrey Bumblebee stereo camera was used
to capture mono images IL and IR at a resolution of
512x384 pixels. The camera poses were accurately estimated
with a robust visual odometry system. This is described in
[1], and is shown to have positional errors of the order of
1cm over a 1km loop.

B. Stereo

1) Preprocessing: The images are undistorted and rec-
tified ensuring that the epipolar lines correspond to image
rows - this reduces the stereo matching problem to a 1D
search. They are processed with a fast approximation to the
Laplacian of Gaussian filter - the separable Difference of
Gaussians. This reduces image noise, removes photometric
variation between images, and enhances edges.

2) Local window-based stereo: Our local window-based
stereo correspondence algorithm employs a number of dis-
parity refinement and error detection stages. Using IL as
the reference image, we calculate correlation scores using
sum of absolute differences over a square correlation window
(typically 11x11 pixels2). The disparity scores are refined
using a multiple supporting window technique described
by Hirschmüller et al. [14], helping to eliminate errors at
depth discontinuities. For each pixel in IL a search of
the corresponding discrete correlation curve is performed,
looking for the minimum (i.e. best) correlation score. A
left/right consistency check, as proposed by Fua [15], ensures

(a) Merged graph (b) Rift (c) Path planning

Fig. 5. (a) shows detail of the graph merging operation - orange edges
are new and join two graphs. (b) shows a rift with edges connecting the rift
vertex to the graph. (c) shows detail of a path planned across a graph with
A∗.

(a) Rifts detected (b) Final point cloud

(c) Rifts detected (d) Final point cloud

Fig. 6. (a) and (c) show the initial rifts detected in the point cloud with the
dominant rift, Rd, in red. (b) and (d) show the point cloud after moving the
camera to inspect Rd and performing merging and visibility checks. The
camera trajectories are shown in green.

that this minimum is agreed on in both images. Only sharply
defined minima are accepted as valid disparity scores, as a
flat curve is indicative of low texture and poor confidence
in the match. Subpixel interpolation is performed by fitting
a parabola to the correlation minimum and neighbouring
values, with the curve’s critical point being taken as the
subpixel disparity score. Finally, we filter isolated pixels by
considering the local neighbourhood of each refined disparity
and discarding pixels which do not share similar disparity
values with their neighbours.

Fig. 1(b) shows a typical result of this algorithm.

C. Surface coverage

1) Graph operations: Fig. 5 shows results from various
stages of our method. Successful graph merging (Section VI)
is shown in Fig. 5(a). Orange edges are new edges introduced
to connect the two graphs. Fig. 5(b) shows a rift in the graph,
identified using the method of Section V. The red edges
connect the rift vertex to the graph, and the arrow indicates
the normal direction of the rift. Finally Fig. 5(c) shows a
path planned over the graph using A∗(Section VIII), and
the resulting camera poses - note that the camera is always
oriented to point towards the surface.

3914

Fig. 6(a) 6(b) 6(c) 6(d)
Raw points 140789 548978 15124 605831
Graph vertices 140789 422060 151214 447503
Graph edges 280130 902108 300032 884977
Surface area 13m2 52m2 177m2 452m2

TABLE I
DATA FOR FIG. 6.

2) Real data: Fig. 6 shows the results of applying our
method to real data. Figs. 6(a) and 6(b) are generated from
a sequence of images from a lab environment, a photo of
which is seen in Fig. 1(a). Figs. 6(c) and 6(d) are generated
using images from the New College data set[16].

Fig. 6(a) shows the graph generated from a single camera
pose. Rifts have been identified and highlighted with green
arrows, the dominant rift, Rd, with red. Fig. 6(b) is the result
of a change in camera pose to point along the normal of Rd.

Fig. 6(c) is a graph generated from an image of a street.
Note the high walls ahead and to the right meaning that
the obvious place to explore is the corner to the left. The
dominant rift is indeed oriented such that the new camera
pose will be pointing into this unknown area. Fig. 6(d) shows
a view of the previously unseen workspace. The original
dominant rift has been deleted due to the visibility check of
Section VII, and a new dominant rift has been chosen.

The camera paths resulting in both Fig. 6(b) and 6(d)
consisted of 4 intermediate poses. The graphs were merged
and visibility checks were done at each pose.

Numerical data for these figures is given in Table (1). Raw
points is the number of points without any graph merging
- concatenated point clouds. Graph vertices is the reduced
point set after merging (this is the same as raw points for
single poses). Graph edges is the number of edges after
merging. Surface area is a rough estimate of the world
surface covered by the graph.

Fig. 6 and Table (1) show that chasing down the dominant
rift has improved the completeness of the surface of the
workspace. This is shown both in terms of surface area
covered and from views of the resulting point clouds.

X. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper we have presented a method for workspace
surface discovery using a stereo camera. A non-planar graph
structure is constructed with observed pixels in stereo dis-
parity images as vertices. We have shown that by careful
consideration of the properties of this graph we can merge
graphs from multiple camera poses, and eliminate spurious
edges through a visibility check. Areas of discontinuity in
the graph known as rifts are identified and ranked, and new
camera poses are chosen such that these rifts are explored.

This method is shown to improve and extend the
workspace surface map in a small scale lab environment and
an outdoor scene. The result is a graph covering the surface

of the world, which can be lifted to 3D yielding a full scene
reconstruction.

B. Future Work
We currently assume that the camera poses generated by

the graph search algorithm are reachable by our camera. An
obvious next step is to take the physical constraints of a robot
platform into account.

Robustness of this approach to poorly textured surfaces,
which pose problems for stereo processing, will be explored.
We plan to investigate combining stereo with a time-of-flight
sensor as described in [17] to help alleviate this problem.

XI. ACKNOWLEDGEMENTS

This work was supported by an EPSRC Industrial CASE
studentship with OC Robotics.

REFERENCES

[1] P. Newman, G. Sibley, M. Smith, M. Cummins, A. Harrison, C. Mei,
I. Posner, R. Shade, D. Schröter, L. Murphy, W. Churchill, D. Cole,
and I. Reid, “Navigating, recognising and describing urban spaces
with vision and laser,” The International Journal of Robotics Research,
2009.

[2] B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration
and map-building with continuous localization,” in ICRA, vol. 4, May
1998, pp. 3715–3720 vol.4.

[3] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, Oct. 2006, pp.
2276–2282.

[4] R. Sim and J. J. Little, “Autonomous vision-based robotic exploration
and mapping using hybrid maps and particle filters,” Image and Vision
Computing, vol. 27, no. 1-2, pp. 167 – 177, 2009.

[5] B. Tovar, L. Guilamo, and S. M. LaValle, “Gap navigation trees:
Minimal representation for visibility-based tasks,” in Proc. Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2004.

[6] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[7] Y. Landa, D. Galkowski, Y. R. Huang, A. Joshi, C. Lee, K. K.
Leung, G. Malla, J. Treanor, V. Voroninski, A. L. Bertozzi, and Y. R.
Tsai, “Robotic path planning and visibility with limited sensor data.”
American Control Conference, 2007.

[8] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm,
R. Yang, D. Nister, and M. Pollefeys, “Real-time visibility-based
fusion of depth maps,” ICCV, 2007.

[9] B. Morisset, R. Rusu, A. Sundaresan, K. Hauser, M. Agrawal,
J. Latombe, and M. Beetz, “Leaving flatland: Toward real-time 3d
navigation,” ICRA, 2009.

[10] K. Klasing, D. Althoff, D. Wollherr, and M. Buss, “Comparison of
surface normal estimation methods for range sensing applications,” in
ICRA, 2009.

[11] H. Hoppe, T. Derose, T. Duchamp, J. Mcdonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” Computer Graph-
ics, vol. 26, no. 2, pp. 71–78, 1992.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science and
Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107, 1968.

[13] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[14] H. Hirschmüller, P. R. Innocent, and J. Garibaldi, “Real-time
correlation-based stereo vision with reduced border errors,” Interna-
tional Journal of Computer Vision, vol. 47, no. 1-3, pp. 229–246,
2002.

[15] P. Fua, “A parallel stereo algorithm that produces dense depth maps
and preserves image features,” Machine Vision and Applications, 1993.

[16] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman, “The
new college vision and laser data set,” The International Journal of
Robotics Research, vol. 28, no. 5, pp. 595 – 599, May 2009.

[17] Y. Chan, P. Delmas, G. Gimel’farb, and R. Valkenburg, “On fusion
of active range data and passive stereo data for 3d scene modelling,”
Image and Vision Computing New Zealand, 2008.

3915

